Index: code/renderer/tr_model_iqm.c =================================================================== --- code/renderer/tr_model_iqm.c (Revision 1961) +++ code/renderer/tr_model_iqm.c (Arbeitskopie) @@ -67,7 +67,63 @@ mat[10] = a[10] * unLerp + b[10] * lerp; mat[11] = a[11] * unLerp + b[11] * lerp; } +static void JointToMatrix( vec3_t rot, vec3_t scale, vec3_t trans, + float *mat ) { + float rotLen = DotProduct(rot, rot); + float rotW = -SQRTFAST(1.0f - rotLen); + float xx = 2.0f * rot[0] * rot[0]; + float yy = 2.0f * rot[1] * rot[1]; + float zz = 2.0f * rot[2] * rot[2]; + float xy = 2.0f * rot[0] * rot[1]; + float xz = 2.0f * rot[0] * rot[2]; + float yz = 2.0f * rot[1] * rot[2]; + float wx = 2.0f * rotW * rot[0]; + float wy = 2.0f * rotW * rot[1]; + float wz = 2.0f * rotW * rot[2]; + + mat[ 0] = scale[0] * (1.0f - (yy + zz)); + mat[ 1] = scale[0] * (xy - wz); + mat[ 2] = scale[0] * (xz + wy); + mat[ 3] = trans[0]; + mat[ 4] = scale[1] * (xy + wz); + mat[ 5] = scale[1] * (1.0f - (xx + zz)); + mat[ 6] = scale[1] * (yz - wx); + mat[ 7] = trans[1]; + mat[ 8] = scale[2] * (xz - wy); + mat[ 9] = scale[2] * (yz + wx); + mat[10] = scale[2] * (1.0f - (xx + yy)); + mat[11] = trans[2]; +} +static void JointToMatrixInverse( vec3_t rot, vec3_t scale, vec3_t trans, + float *mat ) { + float rotLen = DotProduct(rot, rot); + float rotW = -SQRTFAST(1.0f - rotLen); + + float xx = 2.0f * rot[0] * rot[0]; + float yy = 2.0f * rot[1] * rot[1]; + float zz = 2.0f * rot[2] * rot[2]; + float xy = 2.0f * rot[0] * rot[1]; + float xz = 2.0f * rot[0] * rot[2]; + float yz = 2.0f * rot[1] * rot[2]; + float wx = 2.0f * rotW * rot[0]; + float wy = 2.0f * rotW * rot[1]; + float wz = 2.0f * rotW * rot[2]; + + mat[ 0] = scale[0] * (1.0f - (yy + zz)); + mat[ 1] = scale[0] * (xy + wz); + mat[ 2] = scale[2] * (xz - wy); + mat[ 3] = -DotProduct((mat + 0), trans); + mat[ 4] = scale[0] * (xy - wz); + mat[ 5] = scale[1] * (1.0f - (xx + zz)); + mat[ 6] = scale[2] * (yz + wx); + mat[ 7] = -DotProduct((mat + 4), trans); + mat[ 8] = scale[0] * (xz + wy); + mat[ 9] = scale[1] * (yz - wx); + mat[10] = scale[2] * (1.0f - (xx + yy)); + mat[11] = -DotProduct((mat + 8), trans); +} + /* ================= R_LoadIQM @@ -396,32 +452,9 @@ for( i = 0; i < header->num_joints; i++, joint++ ) { float tmpMat[12]; - float rotW = DotProduct(joint->rotate, joint->rotate); - rotW = -SQRTFAST(1.0f - rotW); + JointToMatrix( joint->rotate, joint->scale, joint->translate, + tmpMat ); - float xx = 2.0f * joint->rotate[0] * joint->rotate[0]; - float yy = 2.0f * joint->rotate[1] * joint->rotate[1]; - float zz = 2.0f * joint->rotate[2] * joint->rotate[2]; - float xy = 2.0f * joint->rotate[0] * joint->rotate[1]; - float xz = 2.0f * joint->rotate[0] * joint->rotate[2]; - float yz = 2.0f * joint->rotate[1] * joint->rotate[2]; - float wx = 2.0f * rotW * joint->rotate[0]; - float wy = 2.0f * rotW * joint->rotate[1]; - float wz = 2.0f * rotW * joint->rotate[2]; - - tmpMat[ 0] = joint->scale[0] * (1.0f - (yy + zz)); - tmpMat[ 1] = joint->scale[0] * (xy - wz); - tmpMat[ 2] = joint->scale[0] * (xz + wy); - tmpMat[ 3] = joint->translate[0]; - tmpMat[ 4] = joint->scale[1] * (xy + wz); - tmpMat[ 5] = joint->scale[1] * (1.0f - (xx + zz)); - tmpMat[ 6] = joint->scale[1] * (yz - wx); - tmpMat[ 7] = joint->translate[1]; - tmpMat[ 8] = joint->scale[2] * (xz - wy); - tmpMat[ 9] = joint->scale[2] * (yz + wx); - tmpMat[10] = joint->scale[2] * (1.0f - (xx + yy)); - tmpMat[11] = joint->translate[2]; - if( joint->parent >= 0 ) { // premultiply with parent-matrix Matrix34Multiply( jointMats + 2 * 12 * joint->parent, @@ -434,18 +467,8 @@ // compute the inverse matrix by combining the // inverse scale, rotation and translation - tmpMat[ 0] = joint->scale[0] * (1.0f - (yy + zz)); - tmpMat[ 1] = joint->scale[1] * (xy + wz); - tmpMat[ 2] = joint->scale[2] * (xz - wy); - tmpMat[ 3] = -DotProduct((tmpMat + 0), joint->translate); - tmpMat[ 4] = joint->scale[0] * (xy - wz); - tmpMat[ 5] = joint->scale[1] * (1.0f - (xx + zz)); - tmpMat[ 6] = joint->scale[2] * (yz + wx); - tmpMat[ 7] = -DotProduct((tmpMat + 4), joint->translate); - tmpMat[ 8] = joint->scale[0] * (xz + wy); - tmpMat[ 9] = joint->scale[1] * (yz - wx); - tmpMat[10] = joint->scale[2] * (1.0f - (xx + yy)); - tmpMat[11] = -DotProduct((tmpMat + 8), joint->translate); + JointToMatrixInverse( joint->rotate, joint->scale, + joint->translate, tmpMat ); if( joint->parent >= 0 ) { // premultiply with inverse parent-matrix @@ -497,31 +520,7 @@ scale[2] += *framedata++ * pose->channelscale[8]; // construct transformation matrix - float rotW = DotProduct(rotate, rotate); - rotW = -SQRTFAST(1.0f - rotW); - - float xx = 2.0f * rotate[0] * rotate[0]; - float yy = 2.0f * rotate[1] * rotate[1]; - float zz = 2.0f * rotate[2] * rotate[2]; - float xy = 2.0f * rotate[0] * rotate[1]; - float xz = 2.0f * rotate[0] * rotate[2]; - float yz = 2.0f * rotate[1] * rotate[2]; - float wx = 2.0f * rotW * rotate[0]; - float wy = 2.0f * rotW * rotate[1]; - float wz = 2.0f * rotW * rotate[2]; - - mat1[ 0] = scale[0] * (1.0f - (yy + zz)); - mat1[ 1] = scale[0] * (xy - wz); - mat1[ 2] = scale[0] * (xz + wy); - mat1[ 3] = translate[0]; - mat1[ 4] = scale[1] * (xy + wz); - mat1[ 5] = scale[1] * (1.0f - (xx + zz)); - mat1[ 6] = scale[1] * (yz - wx); - mat1[ 7] = translate[1]; - mat1[ 8] = scale[2] * (xz - wy); - mat1[ 9] = scale[2] * (yz + wx); - mat1[10] = scale[2] * (1.0f - (xx + yy)); - mat1[11] = translate[2]; + JointToMatrix( rotate, scale, translate, mat1 ); if( pose->parent >= 0 ) { Matrix34Multiply( jointMats + 12 * 2 * pose->parent, @@ -648,7 +647,85 @@ } /* +============= +R_CullIQM +============= +*/ +static int R_CullIQM( iqmData_t *data, trRefEntity_t *ent ) { + vec3_t bounds[2]; + vec_t *oldBounds, *newBounds; + int i; + + // compute bounds pointers + oldBounds = data->bounds + 6*ent->e.oldframe; + newBounds = data->bounds + 6*ent->e.frame; + + // calculate a bounding box in the current coordinate system + for (i = 0 ; i < 3 ; i++) { + bounds[0][i] = oldBounds[i] < newBounds[i] ? oldBounds[i] : newBounds[i]; + bounds[1][i] = oldBounds[i+3] > newBounds[i+3] ? oldBounds[i+3] : newBounds[i+3]; + } + + switch ( R_CullLocalBox( bounds ) ) + { + case CULL_IN: + tr.pc.c_box_cull_md3_in++; + return CULL_IN; + case CULL_CLIP: + tr.pc.c_box_cull_md3_clip++; + return CULL_CLIP; + case CULL_OUT: + default: + tr.pc.c_box_cull_md3_out++; + return CULL_OUT; + } +} + +/* ================= +R_ComputeIQMFogNum + +================= +*/ +int R_ComputeIQMFogNum( iqmData_t *data, trRefEntity_t *ent ) { + int i, j; + fog_t *fog; + vec_t *bounds; + vec3_t diag, center; + vec3_t localOrigin; + vec_t radius; + + if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { + return 0; + } + + // FIXME: non-normalized axis issues + bounds = data->bounds + 6*ent->e.frame; + VectorSubtract( bounds+3, bounds, diag ); + VectorMA( bounds, 0.5f, diag, center ); + VectorAdd( ent->e.origin, center, localOrigin ); + radius = 0.5f * VectorLength( diag ); + + for ( i = 1 ; i < tr.world->numfogs ; i++ ) { + fog = &tr.world->fogs[i]; + for ( j = 0 ; j < 3 ; j++ ) { + if ( localOrigin[j] - radius >= fog->bounds[1][j] ) { + break; + } + if ( localOrigin[j] + radius <= fog->bounds[0][j] ) { + break; + } + } + if ( j == 3 ) { + return i; + } + } + + return 0; +} + +/* +================= R_AddIQMSurfaces Add all surfaces of this model @@ -658,15 +735,91 @@ iqmData_t *data; srfIQModel_t *surface; int i; + qboolean personalModel; + int cull; + int fogNum; + shader_t *shader; data = tr.currentModel->modelData; surface = data->surfaces; - R_SetupEntityLighting( &tr.refdef, ent ); + // don't add third_person objects if not in a portal + personalModel = (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal; + if ( ent->e.renderfx & RF_WRAP_FRAMES ) { + ent->e.frame %= data->num_frames; + ent->e.oldframe %= data->num_frames; + } + + // + // Validate the frames so there is no chance of a crash. + // This will write directly into the entity structure, so + // when the surfaces are rendered, they don't need to be + // range checked again. + // + if ( (ent->e.frame >= data->num_frames) + || (ent->e.frame < 0) + || (ent->e.oldframe >= data->num_frames) + || (ent->e.oldframe < 0) ) { + ri.Printf( PRINT_DEVELOPER, "R_AddIQMSurfaces: no such frame %d to %d for '%s'\n", + ent->e.oldframe, ent->e.frame, + tr.currentModel->name ); + ent->e.frame = 0; + ent->e.oldframe = 0; + } + + // + // cull the entire model if merged bounding box of both frames + // is outside the view frustum. + // + cull = R_CullIQM ( data, ent ); + if ( cull == CULL_OUT ) { + return; + } + + // + // set up lighting now that we know we aren't culled + // + if ( !personalModel || r_shadows->integer > 1 ) { + R_SetupEntityLighting( &tr.refdef, ent ); + } + + // + // see if we are in a fog volume + // + fogNum = R_ComputeIQMFogNum( data, ent ); + for ( i = 0 ; i < data->num_surfaces ; i++ ) { - R_AddDrawSurf( &surface->surfaceType, - surface->shader, 0 /*fogNum*/, 0 ); + if( ent->e.customShader ) { + shader = R_GetShaderByHandle( ent->e.customShader ); + } else { + shader = surface->shader; + } + + // we will add shadows even if the main object isn't visible in the view + + // stencil shadows can't do personal models unless I polyhedron clip + if ( !personalModel + && r_shadows->integer == 2 + && fogNum == 0 + && !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) ) + && shader->sort == SS_OPAQUE ) { + R_AddDrawSurf( (void *)surface, tr.shadowShader, 0, 0 ); + } + + // projection shadows work fine with personal models + if ( r_shadows->integer == 3 + && fogNum == 0 + && (ent->e.renderfx & RF_SHADOW_PLANE ) + && shader->sort == SS_OPAQUE ) { + R_AddDrawSurf( (void *)surface, tr.projectionShadowShader, 0, 0 ); + } + + if( !personalModel ) { + R_AddDrawSurf( &surface->surfaceType, + shader, fogNum, 0 ); + } + surface++; } } @@ -726,14 +879,19 @@ vec2_t (*outTexCoord)[2] = &tess.texCoords[tess.numVertexes]; color4ub_t *outColor = &tess.vertexColors[tess.numVertexes]; - float mat[data->num_joints * 12]; + float *mat; int frame = backEnd.currentEntity->e.frame % data->num_frames; int oldframe = backEnd.currentEntity->e.oldframe % data->num_frames; float backlerp = backEnd.currentEntity->e.backlerp; + int *tri; + glIndex_t *ptr; + glIndex_t base; + RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 ); // compute interpolated joint matrices + mat = (float *)ri.Hunk_AllocateTempMemory( 12 * data->num_joints * sizeof( float ) ); ComputeJointMats( data, frame, oldframe, backlerp, mat ); // transform vertexes and fill other data @@ -813,11 +971,11 @@ (*outColor)[3] = data->colors[4*vtx+3]; } - int *tri = data->triangles; - tri += 3 * surf->first_triangle; + ri.Hunk_FreeTempMemory( mat ); - glIndex_t *ptr = &tess.indexes[tess.numIndexes]; - glIndex_t base = tess.numVertexes; + tri = data->triangles + 3 * surf->first_triangle; + ptr = &tess.indexes[tess.numIndexes]; + base = tess.numVertexes; for( i = 0; i < surf->num_triangles; i++ ) { *ptr++ = base + (*tri++ - surf->first_vertex); @@ -834,7 +992,7 @@ float frac, const char *tagName ) { int joint; char *names = data->names; - float mat[data->num_joints * 12]; + float *mat; // get joint number by reading the joint names for( joint = 0; joint < data->num_joints; joint++ ) { @@ -845,7 +1003,9 @@ if( joint >= data->num_joints ) return qfalse; + mat = (float *)ri.Hunk_AllocateTempMemory( data->num_joints * 12 * sizeof( float ) ); ComputeJointMats( data, startFrame, endFrame, frac, mat ); + tag->axis[0][0] = mat[12 * joint + 0]; tag->axis[1][0] = mat[12 * joint + 1]; tag->axis[2][0] = mat[12 * joint + 2]; @@ -859,5 +1019,7 @@ tag->axis[2][2] = mat[12 * joint + 10]; tag->origin[0] = mat[12 * joint + 11]; + ri.Hunk_FreeTempMemory( mat ); + return qfalse; }